

 Navigation

 	
 index

 	
 next |

 	TESTKRAUT - (a lot of) scientific software testing

Not another software testing framework, please

Note: testkraut is still in its infancy – some of what is written here
could still be an anticipation of the near future.

This is a framework for software testing. That being said, testkraut tries to
minimize the overlap with the scopes of unit testing, regression testing, and
continuous integration testing. Instead, it aims to complement these kinds of
testing, and is able to re-use them, or can be integrated with them.

In a nutshell testkraut helps to facilitate statistical analysis of test
results. In particular, it focuses on two main scenarios:

	Comparing results of a single (test) implementation across different
or changing computational environments (think: different operating systems,
different hardware, or the same machine before an after a software upgrade).

	Comparing results of different (test) implementations generating similar
output from identical input (think: performance of various signal detection
algorithms).

While such things can be done using other available tools as well, testkraut
aims to provide a lightweight (hence portable), yet comprehensive description
of a test run. Such a description allows for decoupling test result generation
and analysis – opening up the opportunity to “crowd-source” software testing
efforts, and aggregate results beyond the scope of a single project, lab,
company, or site.

At this point your probably want to Get started (quickly).

Bug tracker [https://github.com/neurodebian/testkraut/issues] |
Build status [http://travis-ci.org/neurodebian/testkraut] |
Documentation [https://testkraut.readthedocs.org] |
Downloads [https://github.com/neurodebian/testkraut/tags] |
PyPi [http://pypi.python.org/pypi/testkraut]

[image: Build Status]
 [http://travis-ci.org/neurodebian/testkraut]
Wanna help?

If you think it would be worthwhile to contribute to this project your
input would be highly appreciated. Please report issues, send feature-requests,
and pull-request without hesitation!

License

All code is licensed under the terms of the MIT license, or some equally liberal
alternative license. Please see the COPYING file in the source distribution for
more detailed information.

Documentation

	Get started (quickly)
	Download ...

	... and run

	Prototypes of a testkraut user
	The concerned scientist

	The thoughtful software developer

	The careful “downstream”

	The SPEC
	authors

	dependencies

	description

	entities

	environment

	comparisons

	id

	inputs

	outputs

	processes

	system

	tests

	version

	Output fingerprinting
	Writing a custom fingerprinting function

	Output tags

	Terminology

	Frequently Asked Questions

Indices and tables

Index | Module Index | Search Page

 Copyright 2012, The testkraut guys.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	TESTKRAUT - (a lot of) scientific software testing

Get started (quickly)

This should not take much time. testkraut contains no compiled code. It should
run with Python 2.6 (or later) – although Python 3x hasn’t been tested (yet).
If you are running Python 2.6 you should install the argparse [http://pypi.python.org/pypi/argparse] package,
otherwise you won’t have much fun. Here is a list of things the make life
more interesting:

	NumPy [http://numpy.scipy.org]

	not strictly required, but strongly recommended. There should be no need
to have any particular version.

	SciPy [http://www.scipy.org]

	will improve the test result reporting – any reasonably recent version
should do

	libmagic [http://www.darwinsys.com/file]

	helps to provide more meaningful information on file types

	python-colorama [http://pypi.python.org/pypi/colorama]

	for more beautiful console output – but monochrome beings don’t need it

Download ...

testkraut is available from PyPi [http://pypi.python.org], hence it can be installed with
easy_install or pip – the usual way. pip seems to be a little saner
than the other one, so we’ll use this:

% pip install testkraut

This should download and install the latest version. Depending on where you are
installing you might want to call sudo for additional force.

pip will tell you where it installed the main testkraut script.
Depending on your setup you may want to add this location to your PATH
environment variable.

... and run

Now we’re ready to run our first test. The demo test requires FSL [http://www.fmrib.ox.ac.uk/fsl] to be
installed and configured to run (properly set FSLDIR variable and so on...).
The main testkraut script supports a number of commands that are used to prepare
and run tests. A comprehensive listing is available form the help output:

% testkraut --help

To run the demo test, we need to obtain the required test data first. This
is done by telling testkraut to cache all required files locally:

% testkraut cachefiles demo

It will download an anatomical image from a webserver. However, since the image
is the MNI152 template head that comes with FSL, you can also use an existing
local file to populate the cache – please explore the options for this
command.

Now we are ready to run:

% testkraut execute demo

If FSL is functional, this command will run a few seconds and create a
subdirectory testbeds/demo with the test in/output and a comprehensive
description of the test run in JSON format:

% ls testbeds/demo
brain_mask.nii.gz brain.nii.gz head.nii.gz spec.json

That is it – for now...

 Copyright 2012, The testkraut guys.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	TESTKRAUT - (a lot of) scientific software testing

Prototypes of a testkraut user

The concerned scientist

This scientist came up with a sophisticated data analysis pipeline, consisting
of many pieces of software from different vendors. It appears to work correctly
(for now). But this scientist is afraid to upgrade any software on the machine,
because it might break the pipeline. Rigorous tests would have helped, but
“there was no time”. testkraut can help to (semi-automatically) assess the
longitudinal stability of analysis results.

The thoughtful software developer

For any individual software developer or project it is almost impossible to
confirm proper functioning of their software on all possible computing
environments. testkraut can help generate informative performance reports that
can be send back to a developer and offer a more comprehensive assessment
of cross-platform performance.

The careful “downstream”

A packager for a software distribution needs to apply a patch to some software
to improve its integration into the distribution environment. Of course, such a
patch should not have a negative impact on the behavior of the software.
testkraut can help to make a comparative assessment to alert the packager if
something starts to behave in unexpected ways.

 Copyright 2012, The testkraut guys.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	TESTKRAUT - (a lot of) scientific software testing

The SPEC

A test specification (or SPEC) is both primary input and output data for a test
case. As input data a SPEC defines test components, file dependencies, expected
test output, and whatever else that is necessary to describe a test case. As
test output, a SPEC is an annotated version of the input SPEC, with a detailed
descriptions of various properties of observed test components and results.
A SPEC is text file in JSON format.

Path specifications for files can make use of environment variables which get
expanded appropriately. The special variable TESTKRAUT_TESTBED_PATH
can be used to reference the directory in which a test is executed.

The following sections provide a summary of all SPEC components.

authors

A JSON object, where keys email addresses of authors of a SPEC and
corresponding values are the authors’ names.

dependencies

A JSON object where keys are common names for dependencies of a test
case. Values are JSON objects with fields described in the following
subsections.

location

Where is the respective namespace?

For executables this may contain absolute paths and/or environment variables
which will be expanded to their actual values during processing. Such variables
should be listed in the environment section.

type

Could be an executable or a python_mod.

optional

A JSON boolean indicating whether an executable is optional (true),
or required (false; default). Optional executables are useful for writing
tests that need to accommodate changes in the implementation of the to-be-tested
software.

version_cmd

A JSON string specifying a command that will be executed to determine a
version of an executable that is added as value to the version field of the
corresponding entry for this executable in the entities section. If an
output to stderr is found, it will be used as version. If no stderr
output is found, the output to stdout will be used.

Alternatively, this may be a JSON array with exactly two values, where
the first value is, again, the command, and the second value is a regular
expression used to extract matching content from the output of this command.
Output channels are evaluated in the same order as above (first stderr, and
if no match is found stdout).

version_file

A JSON string specifying a file name. The content of this file will be
added as value to the version field of the corresponding entry for this
executable in the entities section.

Alternatively, this may be a JSON array with exactly two values, where
the first value is, again, a file name, and the second value is a regular
expression used to extract matching content from this file as a version.

Example

"executables": {
 "$FSLDIR/bin/bet": {
 "version_cmd": [
 "$FSLDIR/bin/bet2",
 "BET \\(Brain Extraction Tool\\) v(\\S+) -"
]
 },
 "$FSLDIR/bin/bet2": {
 "version_file": "$FSLDIR/etc/fslversion"
 }

description

A JSON string with a verbal description of the test case. The
description should contain information on the nature of the test, any input
data files, and where to obtain them (if necessary).

This section is identical in input SPEC and corresponding output SPEC.

entities

A JSON object, where keys are unique identifiers (JSON string),
and values are JSON objects. Identifiers are unique but identicial
for identical entities, even across systems (e.g. the file sha1sum). All items
in this section describe entities of relevance in the context of a test run –
required executables, their shared library dependencies, script interpreters,
operating system packages providing them, and so on. There are various
categories of values in this section that can be distinguished by their
type field value, and which are described in the following subsections.

This section only exists in output SPECs.

type: binary

This entity represents a compiled executable. The following fields are supported

	path (JSON string)

	Executable path as specified in the input SPEC.

	provider (JSON string)

	Identifier/key of an operating system package entry in the entities
section.

	realpath (JSON string)

	Absolute path to the binary, with all variables expanded and all symlinks
resolved.

	sha1sum (JSON string)

	SHA1 hash of the binary file. This is identical to the item key.

	shlibdeps (JSON array)

	Identifiers/keys of shared library dependency entries in the entities
section.

	version (JSON string)

	Version output generated from the version_cmd or version_file settings
in the input SPEC for the corresponding executable.

type: deb or rpm

This entity represents a DEB or RPM package. The following fields are supported

	arch (JSON string)

	Identifier for the hardware architecture this package has been compiled for.

	name (JSON string)

	Name of the package.

	sha1sum (JSON string)

	SHA1 hash for the package.

	vendor (JSON string)

	Name of the package vendor.

	version (JSON string)

	Package version string.

type: library

This entity represent a shared library. The types and meaning of the supported
fields are identical to binary-type entities, except that there is no
version field.

type: script

This entity represents an interpreted script. The types and meaning of the
supported fields are identical to binary-type entities, except that there
is no shlibdeps field, but instead:

	interpreter (JSON string)

	Identifier/key for the script interpreter entry in the entities
section.

environment

A JSON object, where keys represent names of variables in the system
environment. If the corresponding value is a string the respective variable
will be set to this value prior test execution. If the value is null any
existing variable of such name will be unset. If the value is true the
presence of this variable is required and its value is recorded in the protocol.
If the value is false, the variable is not required and its (optional)
value is recorded.

comparisons

yet to be determined

id

A JSON string with an ID that uniquely identifies the test case.
In a test library the test case needs to be stored in a directory whose name is
equal to this ID, while the SPEC is stored in a file named spec.json inside
this directory. While not strictly required, it is preferred that this ID is
“human-readable” and carries an reasonable amount of semantic information. For
example: fsl-mcflirt is a test the is concerned with the MCFlirt component
of the FSL suite.

This section is identical in input SPEC and corresponding output SPEC.

inputs

A JSON object, where keys represent IDs of required inputs for a test
case. Corresponding values are, again, JSON objects with a mandatory
type field. The value of type is a JSON string
identifying the type of input. Currently only type file is supported. For a
file-type input the following additional fields should be present:

	sha1sum (JSON string)

	SHA1 hash that uniquely identifies the input file.

	tags (JSON array)

	Optional list of JSON strings with tags categorizing the input
(see tags).

	url (JSON string)

	URL where the respective file can be downloaded.

	value (JSON string)

	name of the input file.

Example

"inputs": {
 "head.nii.gz": {
 "sha1sum": "41d817176ceb99ac051d8bd066b500f3fb89be89",
 "type": "file",
 "value": "head.nii.gz"
 }
}

outputs

This section is very similar to the inputs section, and may contain similar
information in matching fields with identical semantics. In contrast to
inputs this section can be substantially extended in the output SPEC. For
example, output files may not have a SHA1 hash specified in the input SPEC, but
a SHA1 hash for the actually observed output file will be stored in the
output’s sha1sum field. Most importantly, for any output file whose
tags match one or more of the configured fingerprint generators a fingerprints field will be added to the
JSON object for the corresponding output file.

fingerprints

The value of this field is a JSON object where keys are names of
fingerprint generators, and values should be JSON objects with a
custom structure that is specific to the particular type of fingerprint.
All fingerprints should contain a version field (JSON number;
integer) that associates any given fingerprint with the implementation
of the generator that created it.

processes

A JSON object describing causal relationships among test components.
Keys are arbitrary process IDs. Values are JSON objects with fields
described in the following subsections.

This section is currently not modified or extended during a test run.

	argv (JSON array)

	argv-style command specification for a process. For example:

["$FSLDIR/bin/bet", "head.nii.gz", "brain", "-m"]

	executable (JSON string)

	ID/key of the associated executable from the executables section.

	generates (JSON array)

	IDs/keys of output files (from the outputs section) created by this
process.

	started_by (JSON string)

	ID/key of the process (from the same section) that started this process.

	uses (JSON array)

	IDs/keys of input files (from the inputs section) required by this
process.

Example

"0": {
 "argv": [
 "$FSLDIR/bin/bet2",
 "head",
 "brain",
 "-m"
],
 "executable": "$FSLDIR/bin/bet2",
 "generates": [
 "brain.nii.gz",
 "brain_mask.nii.gz"
],
 "started_by": 1,
 "uses": [
 "head.nii.gz"
]
},

system

A JSON object listing various properties of the computational
environment a test was ran in. This section is added by the test runner and
only exists in output SPECs.

tests

A JSON array of JSON objects describing the actual test cases.
All (sub-)test cases are executed in order of appearance in the array, in the
same test bed, using the same environment. Multiple sub-tests can be used to
split tests into sub parts to improve error reporting, while minimizing test
SPEC overhead. However, output fingerprinting is only done once after all
subtests have completed successfully.

For each JSON object describing a sub-test, the mandatory type
field identifies the kind of test case and the possible content of this section
changes accordingly. Supported scenarios are described in the following
subsections.

For any test type, a test can be marked as an expected failure by adding a field
shouldfail and setting its value to true.

An optional field id can be used to assign a meaningful identifier to a
subtest that is used in the test protocol. If no id is given, as subtest’s
index in the tests array is used as identifier.

type: shell

The test case is a shell command. The command is specified in a text field
code, such as:

"code": "$FSLDIR/bin/bet head.nii.gz brain -m"

In the output SPEC of a test run this section is amended with the
following fields:

	exitcode (JSON number; integer)

	Exit code for the executed command.

type: python

Explain me

type: nipype

Explain me

version

A JSON number (integer) value indicating the version of a SPEC. This version
must be incremented whenever a change to a SPEC is done.

This section is identical in input SPEC and corresponding output SPEC.

 Copyright 2012, The testkraut guys.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	TESTKRAUT - (a lot of) scientific software testing

Output fingerprinting

Modules with fingerprint generators:

	fingerprints
	

	fingerprints.base
	

Writing a custom fingerprinting function

Writing a custom fingerprint implementation for a particular kind of output
is pretty straightforward. Start by creating a function with the following
interface:

def fp_my_fingerprint(fname, fpinfo, tags):
 pass

The variable fname will contain the filename/path of the output for which a
fingerprint shall be created. fpinfo is an empty dictionary to which the
content of the fingerprint needs to be added. A test runner will add this
dictionary to the fingerprints section of the respective output file in the
SPEC. The name of the fingerprinting function itself will be used as key for
this fingerprint element in that section. Any fp_-prefix, as in the example
above, will be stripped from the name. Finally, tags is a sequence of
Output tags that categorize a file and can be used to adjust the
content of a fingerprint accordingly.

Any fingerprinting function must add a __version__ tag to the fingerprint.
The version must be incremented whenever the fingerprint implementation
changes, to make longitudinal comparisons of test results more accurate.

There is no need to return any value – all content needs to be added to the
fpinfo dictionary.

A complete implementation of a fingerprinting function that stores the size of
an input file could look like this:

>>> import os
>>> def fp_file_size(fname, fpinfo, tags):
... fpinfo['__version__'] = 0
... fpinfo['size'] = os.path.getsize(fname)
>>> #
>>> # test it
>>> #
>>> from testkraut.fingerprints import proc_fingerprint
>>> fingerprints = {}
>>> proc_fingerprint(fp_file_size, fingerprints, 'COPYING')
>>> 'file_size' in fingerprints
True
>>> 'size' in fingerprints['file_size']
True

There is no need to catch exceptions inside fingerprinting functions. The test
runner will catch any exception and everything that has been stored in the
fingerprint content dictionary up to when the exception occurred will be
preserved. The exception itself will be logged in a __exception__ field.

To enable the new fingerprinting function, add it to any appropriate tag in the
fingerprints section of the configuration file:

[fingerprints]
want size = myownpackage.somemodule.fp_file_size

With this configuration this fingerprint will be generated for any output that
is tagged want size. It is required that the function is “importable” from
the specified location.

 Copyright 2012, The testkraut guys.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	TESTKRAUT - (a lot of) scientific software testing

Output tags

This glossary lists all known tags that can be used to label test outputs.
According to the assigned tags appropriate fingerprinting or evaluation
methods are automatically applied to the output data.

	3D image, 4D image

	a sub-category of volumetric image with a particular number of axes

	columns

	columns of a matrix or an array should be described individually

	nifti1 format

	a file in any variant of the NIfTI1 format

	numeric values

	a file containing an array/matrix of numeric values

	rows

	rows of a matrix or an array should be described individually

	store

	as much of the file content should be keep verbatim in a fingerprint

	text file

	a file with text-only, i.e. non-binary content

	table

	a file with data table layout (if a text format, column names are in first
line; uniform but arbitrary delimiter)

	tscores

	values from a Student’s t-distribution [http://en.wikipedia.org/wiki/Student%E2%80%99s_t-distribution]

	volumetric image

	a multi-dimensional (three or more) image

	whitespace-separated fields

	data in a structured text format where individual fields are separated by any
white-space character(s)

	zscores

	standardized values indicating how many standard deviations an original
value is above or below the mean

 Copyright 2012, The testkraut guys.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	TESTKRAUT - (a lot of) scientific software testing

Terminology

	JSON array

	An ordered sequence of values, comma-separated and enclosed in square
brackets; the values do not need to be of the same type
(for more information see the “JSON” Wikipedia entry section on data
types [http://en.wikipedia.org/wiki/JSON#Data_types.2C_syntax_and_example])

	JSON boolean

	Boolean value: true or false (for more information see the “JSON”
Wikipedia entry section on data types [http://en.wikipedia.org/wiki/JSON#Data_types.2C_syntax_and_example])

	JSON number

	Double precision floating-point format in JavaScript
(for more information see the “JSON” Wikipedia entry section on data
types [http://en.wikipedia.org/wiki/JSON#Data_types.2C_syntax_and_example])

	JSON object

	an unordered collection of key:value pairs with the ‘:’ character separating
the key and the value, comma-separated and enclosed in curly braces; the keys
must be strings and should be distinct from each other
(for more information see the “JSON” Wikipedia entry section on data
types [http://en.wikipedia.org/wiki/JSON#Data_types.2C_syntax_and_example])

	JSON string

	Double-quoted Unicode, with backslash escaping
(for more information see the “JSON” Wikipedia entry section on data
types [http://en.wikipedia.org/wiki/JSON#Data_types.2C_syntax_and_example])

 Copyright 2012, The testkraut guys.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	TESTKRAUT - (a lot of) scientific software testing

Frequently Asked Questions

	Why this name?

	The original aim for this project was to achieve “crowd-sourcing” of software
testing efforts. “kraut” is obviously almost a semi-homonym of “crowd”, while
at the same time indicating that this software spent its infancy at the
Institute of Psychology Magdeburg, Germany.

 Copyright 2012, The testkraut guys.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	TESTKRAUT - (a lot of) scientific software testing

Design

Goal

This aims to be a tool for testing real-world (integrated) software
environments with heterogeneous components from different vendors. It does
not try to be

	a unit test framework (you better pick one for you programming language of
choice)

	a continuous integration testing framework (take a look at Jenkins or
buildbot)

	a test framework for individual pieces of software (although that could work)

Instead, this tool is targeting the evaluation of fully deployed software on
“production” systems. It aims at verifying proper functioning (or unchanged
behavior) of software systems comprised of components that were not
specifically designed or verified to work with each other.

Objectives

	Gather comprehensive information about the software environment

	Integrate test case written in arbitrary languages or toolkits with minimal
overhead

	Make it possible to easily deploy the system on users’ machines to
verify their environments

Dump of discussion with Satra

	NiPyPE will do the provenance, incl. the gathering of system/env information

	anything missing in this domain needs to be added to nipype

	a test is a json file

	test code is stored directly in the json file

	tests will typically be nipype workflows

	individual tests will not depend on other tests (although a test runner could
resolve data dependencies with outputs from other tests)

	a tests definition specifies: test inputs, test dependencies (e.g. software),
and an (optional) evaluative statement

Dump of discussion with Alex

	A test fails or passes

	Evaluation assesses the quality of the test results (but doesn’t necessarily
let a test fail)

	Dashboard-level evaluation will provide highly aggregated analysis (e.g.
distributions of evaluation metrics)

	Threshold levels for evaluation might need to be pulled from the dashboard

	Compare test output spec to actual content of the testbed after a test run

	Write little tool to check a test spec for comprehensive usage of all test
output in evaluations

Generate test descriptions

cde -o /tmp/betcde/ bet head.nii.gz brain
find /tmp/betcde/cde-root -executable -a -type f -a ! -name ‘.cde’ -a ! -name ‘.so’

	“depends”: [

	
	{

	“type”: “executable”,
“path”: “$FSLDIR/bin/remove_ext”,
“dpkg”: “fsl-5.0”

}

]

via Tomoyo (Just an idea)

Tomoyo is a lightweight and easy-to-use MAC (Mandatory Access Control)
system for Linux, available in stock Linux kernel and tools shipped on
Debian. In Learning mode it can easily collect provenance information
on what executables/libraries were used for a particular parent
process, what files were accessed, environment variables, etc.

	Pros:

	should have virtually no run-time impact

	Cons:

	might require admin privileges to get into learning mode and
harvest result information

On SPECs

All nested dicts – except for leaves of the tree. That implies that no list
can be used anywhere inside the tree!!

 Copyright 2012, The testkraut guys.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	TESTKRAUT - (a lot of) scientific software testing

Index

 Symbols
 | C
 | E
 | J
 | N
 | R
 | S
 | T
 | V
 | W
 | Z

Symbols

 	

 	3D image, 4D image

C

 	

 	columns

E

 	

 	
 environment variable

 	

 	TESTKRAUT_TESTBED_PATH

J

 	

 	JSON array

 	JSON boolean

 	JSON number

 	

 	JSON object

 	JSON string

N

 	

 	nifti1 format

 	

 	numeric values

R

 	

 	rows

S

 	

 	store

T

 	

 	table

 	TESTKRAUT_TESTBED_PATH

 	

 	text file

 	tscores

V

 	

 	volumetric image

W

 	

 	whitespace-separated fields

Z

 	

 	zscores

 Copyright 2012, The testkraut guys.
 Created using Sphinx 1.3.1.

 _static/comment.png

_static/up.png

_static/ajax-loader.gif

_static/plus.png

_static/comment-bright.png

_static/down-pressed.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		TESTKRAUT - (a lot of) scientific software testing »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, The testkraut guys.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

_static/file.png

_static/minus.png

_static/down.png

